12 research outputs found

    Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    Get PDF
    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria

    Exploring the Effect of Phage Therapy in Preventing <i>Vibrio anguillarum</i> Infections in Cod and Turbot Larvae

    Get PDF
    The aquaculture industry is suffering from losses associated with bacterial infections by opportunistic pathogens. Vibrio anguillarum is one of the most important pathogens, causing vibriosis in fish and shellfish cultures leading to high mortalities and economic losses. Bacterial resistance to antibiotics and inefficient vaccination at the larval stage of fish emphasizes the need for novel approaches, and phage therapy for controlling Vibrio pathogens has gained interest in the past few years. In this study, we examined the potential of the broad-host-range phage KVP40 to control four different V. anguillarum strains in Atlantic cod (Gadus morhua L.) and turbot (Scophthalmus maximus L.) larvae. We examined larval mortality and abundance of bacteria and phages. Phage KVP40 was able to reduce and/or delay the mortality of the cod and turbot larvae challenged with V. anguillarum. However, growth of other pathogenic bacteria naturally occurring on the fish eggs prior to our experiment caused mortality of the larvae in the unchallenged control groups. Interestingly, the broad-spectrum phage KVP40 was able to reduce mortality in these groups, compared to the nonchallenge control groups not treated with phage KVP40, demonstrating that the phage could also reduce mortality imposed by the background population of pathogens. Overall, phage-mediated reduction in mortality of cod and turbot larvae in experimental challenge assays with V. anguillarum pathogens suggested that application of broad-host-range phages can reduce Vibrio-induced mortality in turbot and cod larvae, emphasizing that phage therapy is a promising alternative to traditional treatment of vibriosis in marine aquaculture
    corecore